Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Neurosci Methods ; 407: 110136, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642806

RESUMEN

BACKGROUND: In the pursuit of finer Brain-Computer Interface commands, research focus has shifted towards classifying EEG signals for multiple tasks. While single-joint multitasking motor imagery provides support, distinguishing between EEG signals from the same joint remains challenging due to their similar brain spatial distribution. NEW METHOD: We designed experiments involving three motor imagery tasks-wrist extension, wrist flexion, and wrist abduction-with six participants. Based on this, a single-joint multi-task motor imagery EEG signal recognition method using Empirical Wavelet Decomposition and Multi-Kernel Extreme Learning Machine is proposed. This method employs Empirical Wavelet Decomposition (EWT) for modal decomposition, screening, and reconstruction of raw EEG signals, feature extraction using Common Spatial Patterns (CSP), and classification using Multi-Kernel Extreme Learning Machine (MKELM). RESULTS: After EWT processing, differences in time and frequency characteristics between EEG signals of different classes were enhanced, with the MKELM model achieving an average recognition accuracy of 91.93 %. COMPARISON WITH OTHER METHODS AND CONCLUSIONS: We compared EWT with Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD), Local Mean Decomposition (LMD), and Wavelet Packet Decomposition (WPD). The results showed that the differences between various types of EEG signals processed by EWT were the most pronounced. The MKELM model outperformed traditional machine learning models such as Extreme Learning Machine (ELM), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Linear Discriminant Analysis (LDA) in terms of recognition performance, and also exhibited faster training speeds than deep learning models such as Bayesian Convolutional Neural Network (BCNN) and Attention-based Dual-scale Fusion Convolutional Neural Network (ADFCNN). In summary, the proposed method provides a new approach for achieving finer Brain-Computer Interface commands.

2.
Sci Rep ; 14(1): 6691, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509170

RESUMEN

The clinical effects of Schisandra chinensis against human disease are well-documented; however, studies on its application in controlling plant pathogens are limited. Here, we investigated its inhibitory effect on the growth of Alternaria alternata, a fungus which causes significant post-harvest losses on apples, known as black spot disease. S. chinensis fruit extract exhibited strong inhibitory effects on the growth of A. alternata with an EC50 of 1882.00 mg/L. There were 157 compounds identified in the extract by high performance liquid chromatography-mass spectrometry, where benzocaine constituted 14.19% of the extract. Antifungal experiments showed that the inhibitory activity of benzocaine on A. alternata was 43.77-fold higher than the crude extract. The application of benzocaine before and after A. alternata inoculation on apples prevented the pathogen infection and led to mycelial distortion according to scanning electron microscopy. Transcriptome analysis revealed that there were 4226 genes differentially expressed between treated and untreated A. alternata-infected apples with benzocaine. Metabolomics analysis led to the identification of 155 metabolites. Correlation analysis between the transcriptome and metabolome revealed that benzocaine may inhibit A. alternata growth via the beta-alanine metabolic pathway. Overall, S. chinensis extract and benzocaine are environmentally friendly plant-based fungicides with potential to control A. alternata.


Asunto(s)
Fungicidas Industriales , Schisandra , Humanos , Benzocaína/farmacología , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Alternaria/genética
3.
Drug Dev Res ; 85(2): e22164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411296

RESUMEN

Compared to traditional small molecule and antibody drugs, RNA-based drugs offer a simple design, short research and development cycles, high specificity, broad treatment fields, and long-term efficacy. As a result, RNA-based drugs are extensively used to treat genetic diseases, tumors, viral infections, and other illnesses, suggesting that they have the potential to become the third-largest drug class after small molecule and antibody drugs. Currently, more than 10 small nucleic acid drugs have gained regulatory approval. The commercialization successes of small nucleic acid drugs will stimulate the development of RNA-based drugs. Small nucleic acid drugs primarily target liver diseases, metabolic diseases, genetic diseases, and tumors, and there is also significant potential for expanding indications in the future. This review provides a brief overview of the advantages and development of small nucleic acid-based therapeutics and shows a focus on platform technologies such as chemical modifications and delivery systems that have enabled the clinical translation of small nucleic acid-based therapeutics. Additionally, we summarize the latest clinical progress in small nucleic acid-based therapeutics for the treatment of various diseases, including rare diseases, liver diseases, metabolic diseases, and tumors. Finally, we highlight the future prospects for this promising treatment approach.


Asunto(s)
Enfermedades Metabólicas , Neoplasias , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/uso terapéutico , Ácidos Nucleicos/química , ARN Interferente Pequeño , Preparaciones Farmacéuticas , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Enfermedades Metabólicas/tratamiento farmacológico
4.
BMC Pregnancy Childbirth ; 24(1): 133, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350926

RESUMEN

BACKGROUND: About 25% of pregnant women experience bleeding in the early stage, and half of them eventually progress to pregnancy loss. Progesterone serves as a useful biomarker to predict miscarriage in threatened miscarriage, yet its performance is still debated. AIM: To evaluate the performance of single serum progesterone predicting miscarriage in early pregnant patients with threatened miscarriage. METHOD: The online database was searched to yield the literature using the terms of 'Abortion', 'Miscarriage', and 'serum Progesterone', including PubMed, Scopus, Embase, Cochrane library, and China national knowledge infrastructure. Receiver operating characteristic (ROC) curve, likelihood ratio (LLR) and diagnostic odds ratio (DOR) and 95% confidence interval (CI) were computed. Publication bias was assessed by the deeks funnel plot asymmetry test. Subgroup analyses were conducted according to the progesterone level (< 12 ng/mL), recruited location and region, progesterone measurement method, exogenous progesterone supplement and follow up. RESULTS: In total, 12 studies were eligible to be included in this study, with sample sizes ranging from 76 to 1087. The included patients' gestational age was between 4 and 12 weeks. No significant publication bias was detected from all included studies. The threshold of progesterone reported ranged from 8 to 30 ng/ml. The synthesized area under the ROC curve (0.85, 95% CI 0.81 to 0.88), positive LLR (6.2, 4.0 to 9.7) and DOR (18, 12 to 27) of single progesterone measurement distinguishing miscarriage were relatively good in early pregnant patients with threatened miscarriage. When the threshold of < 12 ng/mL was adapted, the progesterone provided a higher area under the ROC curve (0.90 vs. 0.78), positive LLR (8.3 vs. 3.8) and DOR (22 vs.12) than its counterpart (12 to 30 ng/mL). CONCLUSION: Single progesterone measurement can act as a biomarker of miscarriage in early pregnant patients with threatened miscarriage, and it has a better performance when the concentration is <12 ng/mL. TRIAL REGISTRATION: PROSPERO (CRD42021255382).


Asunto(s)
Aborto Espontáneo , Amenaza de Aborto , Embarazo , Humanos , Femenino , Recién Nacido , Lactante , Progesterona , Amenaza de Aborto/diagnóstico , Mujeres Embarazadas , Biomarcadores
5.
Nano Lett ; 24(6): 2048-2056, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38166154

RESUMEN

Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.

6.
Acta Biomater ; 174: 281-296, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951519

RESUMEN

RNA interference (RNAi) presents great potential against intractable liver diseases. However, the establishment of specific, efficient, and safe delivery systems targeting hepatocytes remains a great challenge. Herein, we described a promising hepatocytes-targeting system through integrating triantennary N-acetylgalactosamine (GalNAc)-engineered cell membrane with biodegradable mesoporous silica nanoparticles, which efficiently and safely delivered siRNA to hepatocytes and silenced the target PCSK9 gene expression for the treatment of non-alcoholic fatty liver disease. Having optimized the GalNAc-engineering strategy, insertion orders, and cell membrane source, we obtained the best-performing GalNAc-formulations allowing strong hepatocyte-specific internalization with reduced Kupffer cell capture, resulting in robust gene silencing and less hepatotoxicity when compared with cationic lipid-based GalNAc-formulations. Consequently, a durable reduction of lipid accumulation and damage was achieved by systemic administering siRNAs targeting PCSK9 in high-fat diet-fed mice, accompanied by displaying desirable safety profiles. Taken together, this GalNAc-engineering biomimetics represented versatile, efficient, and safe carriers for the development of hepatocyte-specific gene therapeutics, and prevention of metabolic diseases. STATEMENT OF SIGNIFICANCE: Compared to MSN@LP-GN3 (MC3-LNP), MSN@CM-GN3 exhibited strong hepatocyte targeting and Kupffer cell escaping, as well as good biocompatibility for safe and efficient siRNA delivery. Furthermore, siPCSK9 delivered by MSN@CM-GN3 reduced both serum and liver LDL-C, TG, TC levels and lipid droplets in HFD-induced mice, resulting in better performance than MSN/siPCSK9@LP-GN3 in terms of lipid-lowering effect and safety profiles. These findings indicated promising advantages of our biomimetic GN3-based systems for hepatocyte-specific gene delivery in chronic liver diseases. Our work addressed the challenges associated with the lower targeting efficiency of cell membrane-mimetic drug delivery systems and the immunogenicity of traditional GalNAc delivery systems. In conclusion, this study provided an effective and versatile approach for efficient and safe gene editing using ligand-integrated biomimetic nanoplatforms.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proproteína Convertasa 9 , Ratones , Animales , Interferencia de ARN , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/farmacología , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Biomimética , Hepatocitos/metabolismo , Hígado/metabolismo , ARN Interferente Pequeño/farmacología , Lípidos/farmacología
7.
ACS Nano ; 18(1): 470-482, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38146673

RESUMEN

Targeted delivery of vaccines to the spleen remains a challenge. Inspired by the erythrophagocytotic process in the spleen, we herein report that intravenous administration of senescent erythrocyte-based vaccines profoundly alters their tropism toward splenic antigen-presenting cells (APCs) for imprinting adaptive immune responses. Compared with subcutaneous inoculation, intravenous vaccination significantly upregulated splenic complement expression in vivo and demonstrated synergistic antibody killing in vitro. Consequently, intravenous senescent erythrocyte vaccination produces potent SARS-CoV-2 antibody-neutralizing effects, with potential protective immune responses. Moreover, the proposed senescent erythrocyte can deliver antigens from resected tumors and adjuvants to splenic APCs, thereby inducing a personalized immune reaction against tumor recurrence after surgery. Hence, our findings suggest that senescent erythrocyte-based vaccines can specifically target splenic APCs and evoke adaptive immunity and complement production, broadening the tools for modulating immunity, helping to understand adaptive response mechanisms to senescent erythrocytes better, and developing improved vaccines against cancer and infectious diseases.


Asunto(s)
Bazo , Vacunas , Vacunación , Inmunidad Adaptativa , Administración Intravenosa , Eritrocitos
8.
Bioorg Chem ; 142: 106932, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913586

RESUMEN

The incidence of infections caused by drug-resistant bacteria has been one of the most serious health threats in the past and is substantially increasing in an alarming rate. Therefore, the development of new antimicrobial agents to combat bacterial resistance effectively is urgent. This study focused on the design and synthesis of 40 novel tetrahydrobenzothiophene amide/sulfonamide derivatives and their antibacterial activities were evaluated. Compounds 2p, 6p, and 6 s exhibited significant inhibitory effects on the growth of bacteria. To assess their safety, the cytotoxicity of the compounds was assessed using human normal liver cells, revealing that compound 6p has lower cytotoxicity. A mouse wound healing experiment demonstrated that compound 6p effectively improved wound infection induced by trauma and accelerated the healing process. Compound 6p holds promise as a potential therapeutic agent for combating bacterial infections.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias
9.
Sci Rep ; 13(1): 23010, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155169

RESUMEN

As the cornerstone of transmission and distribution equipment, power transformer plays a very important role in ensuring the safe operation of power system. At present, the technology of dissolved gas analysis (DGA) has been widely used in fault diagnosis of oil-immersed transformer. However, in the actual scene, the limited number of transformer fault samples and the uneven distribution of different fault types often lead to low overall fault detection accuracy or a few types of fault misjudgment. Therefore, a transformer fault diagnosis method based on TLR-ADASYN balanced data set is presented. This method effectively addresses the issue of samples imbalance, reducing the impact on misjudgment caused by a few samples. It delves deeply into the correlation between the ratio of dissolved gas content in oil and fault type, eliminating redundant informations and reducing characteristic dimensions. The diagnostic model SO-RF (Snake Optimization-Random Forest) is established, achieving a diagnostic accuracy rate of 97.06%. This enables online diagnosis of transformers. Comparative analyses using different sampling methods, various features, and diverse diagnostic models were conducted to validate the effectiveness of the proposed method. In conclusion, validation was conducted using a public dataset, and the results demonstrate that the proposed method in this paper exhibits strong generalization capabilities.

10.
Pharmaceutics ; 15(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37765153

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic poses a disruptive impact on public health and the global economy. Fortunately, the development of COVID-19 vaccines based on in vitro-transcribed messenger RNA (IVT mRNA) has been a breakthrough in medical history, benefiting billions of people with its high effectiveness, safety profile, and ease of large-scale production. This success is the result of decades of continuous RNA research, which has led to significant improvements in the stability and expression level of IVT mRNA through various approaches such as sequence optimization and improved preparation processes. IVT mRNA sequence optimization has been shown to have a positive effect on enhancing the mRNA expression level. The innovation of IVT mRNA purification technology is also indispensable, as the purity of IVT mRNA directly affects the success of downstream vaccine preparation processes and the potential for inducing unwanted side effects in therapeutic applications. Despite the progress made, challenges related to IVT mRNA sequence design and purification still require further attention to enhance the quality of IVT mRNA in the future. In this review, we discuss the latest innovative progress in IVT mRNA design and purification to further improve its clinical efficacy.

11.
Biomaterials ; 292: 121907, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436305

RESUMEN

The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). The pSpike/PP-sNp not only displays superior gene transfection and favorable biocompatibility in the mouse airway, but also promotes a tripartite immunity consisting of systemic, cellular, and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, immunization with pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp is a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas de ADN , Ratones , Animales , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunación , Péptidos , ADN , Anticuerpos Neutralizantes
12.
BMC Cancer ; 22(1): 1357, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577958

RESUMEN

PURPOSE: The combination of taxanes and anthracyclines is still the mainstay of chemotherapy for early breast cancer. Capecitabine is an active drug with a favorable toxicity profile, showing strong anti-tumor activity against metastatic breast cancer. This trial assessed the efficacy and safety of the TX regimen (docetaxel and capecitabine) and compared it with the TE (docetaxel and epirubicin) regimen in locally advanced or high risk early HER2-negative breast cancer. PATIENTS AND METHODS: This randomized clinical trial was conducted at five academic centers in China. Eligible female patients were randomly assigned (1:1) to the TX (docetaxel 75 mg/m2 d1 plus capecitabine 1000 mg/m2 twice d1-14, q3w) or TE (docetaxel 75 mg/m2 d1 plus epirubicin 75 mg/m2 d1, q3w) groups for four cycles. The primary endpoint was a pathological complete response in the breast (pCR). Secondary endpoints included pCR in the breast and axilla, invasive disease-free survival (iDFS), overall survival (OS), and safety. RESULTS: Between September 1, 2012, and December 31, 2018, 113 HER2-negative patients were randomly assigned to the study groups (TX: n = 54; TE: n = 59). In the primary endpoint analysis, 14 patients in the TX group achieved a pCR, and nine patients in the TE group achieved a pCR (25.9% vs. 15.3%), with a not significant difference of 10.6% (95% CI -6.0-27.3%; P = 0.241). In a subgroup with high Ki-67 score, TX increased the pCR rate by 24.2% (95% CI 2.2-46.1%; P = 0.029). At the end of the 69-month median follow-up period, both groups had equivalent iDFS and OS rates. TX was associated with a higher incidence of hand-foot syndrome and less alopecia, with a manageable toxicity profile. CONCLUSION: The anthracycline-free TX regimen yielded comparable pCR and long-term survival rates to the TE regimen. Thus, this anthracycline-free regimen could be considered in selected patients. TRIAL REGISTRATION: ACTRN12613000206729 on 21/02/2013, retrospectively registered.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Femenino , Humanos , Antraciclinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Capecitabina/efectos adversos , Ciclofosfamida/uso terapéutico , Docetaxel/uso terapéutico , Epirrubicina/efectos adversos , Fluorouracilo/efectos adversos , Resultado del Tratamiento
13.
J Vis Exp ; (186)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36062993

RESUMEN

In vitro transcribed messenger RNA (mRNA) vaccines have displayed enormous potential in fighting against the coronavirus disease 2019 (COVID-19) pandemic. Efficient and safe delivery systems must be included in the mRNA vaccines due to the fragile properties of mRNA. A self-assembled peptide-poloxamine nanoparticle (PP-sNp) gene delivery system is specifically designed for the pulmonary delivery of nucleic acids and displays promising capabilities in mediating successful mRNA transfection. Here, an improved method for preparing PP-sNp is described to elaborate on how the PP-sNp encapsulates Metridia luciferase (MetLuc) mRNA and successfully transfects cultured cells. MetLuc-mRNA is obtained by an in vitro transcription process from a linear DNA template. A PP-sNp is produced by mixing synthetic peptide/poloxamine with mRNA solution using a microfluidic mixer, allowing for the self-assembly of PP-sNp. The charge of PP-sNp is subsequently evaluated by measuring the zeta potential. Meanwhile, the polydispersity and hydrodynamic size of PP-sNp nanoparticles are measured using dynamic light scattering. The mRNA/PP-sNp nanoparticles are transfected into cultured cells, and supernatants from the cell culture are assayed for luciferase activity. The representative results demonstrate their capacity for in vitro transfection. This protocol may shed light on developing next-generation mRNA vaccine delivery systems.


Asunto(s)
COVID-19 , Nanopartículas , Células Cultivadas , Humanos , Luciferasas/genética , Péptidos/genética , ARN Mensajero/genética , Transfección , Vacunas Sintéticas , Vacunas de ARNm
14.
Mar Drugs ; 20(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35323510

RESUMEN

Four new benzodipyran racemates, namely (±)-aspergiletals A-D (3-6), representing a rare pyrano[4,3-h]chromene scaffold were isolated together with eurotiumide G (1) and eurotiumide F (2) from the soft-coral-derived fungus Aspergillus sp. EGF 15-0-3. All the corresponding optically pure enantiomers were successfully separated by a chiral HPLC column. The structures and configurations of all the compounds were elucidated based on the combination of NMR and HRESIMS data, chiral separation, single-crystal X-ray diffraction, quantum chemical 13C NMR, and electronic circular dichroism calculations. Meanwhile, the structure of eurotiumide G was also revised. The TDP1 inhibitor activities and photophysical properties of the obtained compounds were evaluated. In the TDP1 inhibition assay, as a result of synergy between (+)-6 and (-)-6, (±)-6 displayed strong inhibitory activity to TDP1 with IC50 values of 6.50 ± 0.73 µM. All compounds had a large Stokes shift and could be utilized for elucidating the mode of bioactivities by fluorescence imaging.


Asunto(s)
Antozoos/microbiología , Aspergillus , Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas/química , Piranos , Animales , Aspergillus/química , Aspergillus/metabolismo , Fluorescencia , Modelos Moleculares , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/aislamiento & purificación , Piranos/química , Piranos/aislamiento & purificación , Piranos/metabolismo
15.
Nanomaterials (Basel) ; 12(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35055244

RESUMEN

Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.

16.
Nat Prod Res ; 36(1): 229-236, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32524840

RESUMEN

Two triterpenes (14S,17S,20S,24R)-25-hydroxy-14,17-cyclo-20,24-epoxy-malabarican-3-one (CEM, 1a) and (14S,17S,20S,24R)-20,24,25-trihydroxy-14,17-cyclomalabarican-3-one (CM, 2a) with a cyclobutane ring were reported, which have the same NMR data as ocotillone (1b) and gardaubryone C (2b), respectively. An incorrect structure might be reported. Therefore, the structure reanalysis of these triterpenes was achieved by CASE algorithm and DFT chemical shift predictions, and the results showed that the structures of CEM and CM might be incorrect. To further verify the structure of compound 1, the HMBC, 1H-1H COSY and HSQC-TOCSY spectra were employed. Herein, we revised the structure of CEM and CM, and our study also showed that CASE algorithm and DFT chemical shift predictions can hold the post of effective structure reassignment method.


Asunto(s)
Triterpenos , Algoritmos , Espectroscopía de Resonancia Magnética , Estructura Molecular
17.
Nanoscale ; 13(45): 19172-19180, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34781325

RESUMEN

Low-dimensional ferroelectricity and Dirac materials with protected band crossings are fascinating research subjects. Based on first-principles calculations, we predict the coexistence of spontaneous in-plane polarization and novel 2D emergent fermions in dynamically stable quadruple-layer (QL) XSbO2 (X = Li, Na). Depending on the different polarization configurations, QL-XSbO2 can exhibit unconventional inner-QL ferroelectricity and antiferroelectricity. Both ground states harbor robust ferroelectricity with enhanced spontaneous polarization of 0.56 nC m-1 and 0.39 nC m-1 for QL-LiSbO2 and QL-NaSbO2, respectively. Interestingly, the QL-LiSbO2 possesses two other metastable ferroelectric (FE) phases. The ground FE phase can be flexibly driven into one of the two metastable FE phases and then into the antiferroelectric (AFE) phase. During this phase transition, several types of 2D fermions emerge, for instance, hourglass hybrid and type-II Weyl loops in the ground FE phase, type-II Weyl fermionsin the metastable FE phase, and type-II Dirac fermions in the AFE phase. These 2D fermions are robust under spin-orbit coupling. Notably, two of these fermions, e.g., an hourglass hybrid or type-II Weyl loop, have not been observed before. Our findings identify QL-XSbO2 as a unique platform for studying 2D ferroelectricity relating to 2D emergent fermions.

18.
PeerJ ; 9: e12027, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513337

RESUMEN

The classification of electroencephalography (EEG) induced by the same joint is one of the major challenges for brain-computer interface (BCI) systems. In this paper, we propose a new framework, which includes two parts, feature extraction and classification. Based on local mean decomposition (LMD), cloud model, and common spatial pattern (CSP), a feature extraction method called LMD-CSP is proposed to extract distinguishable features. In order to improve the classification results multi-objective grey wolf optimization twin support vector machine (MOGWO-TWSVM) is applied to discriminate the extracted features. We evaluated the performance of the proposed framework on our laboratory data sets with three motor imagery (MI) tasks of the same joint (shoulder abduction, extension, and flexion), and the average classification accuracy was 91.27%. Further comparison with several widely used methods showed that the proposed method had better performance in feature extraction and pattern classification. Overall, this study can be used for developing high-performance BCI systems, enabling individuals to control external devices intuitively and naturally.

19.
Int J Nurs Pract ; 27(6): e13013, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34476869

RESUMEN

AIMS: To evaluate whether a nurse-supervised rehabilitation programmes could improve respiratory functions and systematic inflammation in children with asthma. BACKGROUND: Children with asthma always suffer from poor life quality, and physical training and pulmonary rehabilitation could be beneficial to asthma. DESIGN: A retrospective, observational, single-centre cohort analysis. METHOD: Baseline characteristics between the nurse-supervised rehabilitation programme and usual-care groups were matched by propensity-score matching (PSM) in a 1:1 ratio. We compared the lung function and inflammatory markers between groups. RESULTS: Among 52 pairs of children, differences in lung function were improved in the nurse-supervised rehabilitation group compared with those in usual-care group, including the oxygen saturation, forced expiratory volume in 1 second, forced expiratory flow of 25%-75% and peak expiratory flow (all P < 0.05). Two asthma-related inflammatory markers (hypersensitive C-reactive protein and immunoglobulin E) also significantly decreased in the nurse-supervised rehabilitation group (both P < 0.001). CONCLUSIONS: The results indicate that the nurse-supervised rehabilitation programme might be effective in improving symptom control, respiratory functions and systemic inflammation in children with asthma. The study suggests that the NSR for asthma merits further research.


Asunto(s)
Asma , Niño , China , Humanos , Inflamación , Saturación de Oxígeno , Puntaje de Propensión , Estudios Retrospectivos
20.
Pharmaceutics ; 13(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34452241

RESUMEN

In vitro-transcribed (IVT) mRNA has come into focus in recent years as a potential therapeutic approach for the treatment of genetic diseases. The nebulized formulations of IVT-mRNA-encoding alpha-1-antitrypsin (A1AT-mRNA) would be a highly acceptable and tolerable remedy for the protein replacement therapy for alpha-1-antitrypsin deficiency in the future. Here we show that lipoplexes containing A1AT-mRNA prepared in optimum conditions could successfully transfect human bronchial epithelial cells without significant toxicity. A reduction in transfection efficiency was observed for aerosolized lipoplexes that can be partially overcome by increasing the initial number of components. A1AT produced from cells transfected by nebulized A1AT-mRNA lipoplexes is functional and could successfully inhibit the enzyme activity of trypsin as well as elastase. Our data indicate that aerosolization of A1AT-mRNA therapy constitutes a potentially powerful means to transfect airway epithelial cells with the purpose of producing functional A1AT, while bringing along the unique advantages of IVT-mRNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...